Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Añadir filtros

Base de datos
Intervalo de año
1.
Nat Commun ; 14(1): 1177, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: covidwho-2299944

RESUMEN

Cryptic pockets expand the scope of drug discovery by enabling targeting of proteins currently considered undruggable because they lack pockets in their ground state structures. However, identifying cryptic pockets is labor-intensive and slow. The ability to accurately and rapidly predict if and where cryptic pockets are likely to form from a structure would greatly accelerate the search for druggable pockets. Here, we present PocketMiner, a graph neural network trained to predict where pockets are likely to open in molecular dynamics simulations. Applying PocketMiner to single structures from a newly curated dataset of 39 experimentally confirmed cryptic pockets demonstrates that it accurately identifies cryptic pockets (ROC-AUC: 0.87) >1,000-fold faster than existing methods. We apply PocketMiner across the human proteome and show that predicted pockets open in simulations, suggesting that over half of proteins thought to lack pockets based on available structures likely contain cryptic pockets, vastly expanding the potentially druggable proteome.


Asunto(s)
Trabajo de Parto , Proteoma , Humanos , Embarazo , Femenino , Descubrimiento de Drogas , Simulación de Dinámica Molecular , Redes Neurales de la Computación
2.
MEDLINE; 2020.
No convencional en Inglés | MEDLINE | ID: grc-750461

RESUMEN

The SARS-CoV-2/COVID-19 pandemic continues to threaten global health and socioeconomic stability. Experiments have revealed snapshots of many of the viral components but remain blind to moving parts of these molecular machines. To capture these essential processes, over a million citizen scientists have banded together through the Folding@home distributed computing project to create the world's first Exascale computer and simulate protein dynamics. An unprecedented 0.1 seconds of simulation of the viral proteome reveal how the spike complex uses conformational masking to evade an immune response, conformational changes implicated in the function of other viral proteins, and 'cryptic' pockets that are absent in experimental snapshots. These structures and mechanistic insights present new targets for the design of therapeutics. This living document will be updated as we perform further analysis and make the data publicly accessible.

3.
Nat Commun ; 12(1): 3023, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: covidwho-1454758

RESUMEN

Understanding the structural determinants of a protein's biochemical properties, such as activity and stability, is a major challenge in biology and medicine. Comparing computer simulations of protein variants with different biochemical properties is an increasingly powerful means to drive progress. However, success often hinges on dimensionality reduction algorithms for simplifying the complex ensemble of structures each variant adopts. Unfortunately, common algorithms rely on potentially misleading assumptions about what structural features are important, such as emphasizing larger geometric changes over smaller ones. Here we present DiffNets, self-supervised autoencoders that avoid such assumptions, and automatically identify the relevant features, by requiring that the low-dimensional representations they learn are sufficient to predict the biochemical differences between protein variants. For example, DiffNets automatically identify subtle structural signatures that predict the relative stabilities of ß-lactamase variants and duty ratios of myosin isoforms. DiffNets should also be applicable to understanding other perturbations, such as ligand binding.


Asunto(s)
Biología Computacional/métodos , Aprendizaje Profundo , Proteínas/química , Proteínas/metabolismo , Algoritmos , Simulación por Computador , Simulación de Dinámica Molecular , Miosinas , Conformación Proteica , Programas Informáticos
4.
Nat Chem ; 13(7): 651-659, 2021 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1387363

RESUMEN

SARS-CoV-2 has intricate mechanisms for initiating infection, immune evasion/suppression and replication that depend on the structure and dynamics of its constituent proteins. Many protein structures have been solved, but far less is known about their relevant conformational changes. To address this challenge, over a million citizen scientists banded together through the Folding@home distributed computing project to create the first exascale computer and simulate 0.1 seconds of the viral proteome. Our adaptive sampling simulations predict dramatic opening of the apo spike complex, far beyond that seen experimentally, explaining and predicting the existence of 'cryptic' epitopes. Different spike variants modulate the probabilities of open versus closed structures, balancing receptor binding and immune evasion. We also discover dramatic conformational changes across the proteome, which reveal over 50 'cryptic' pockets that expand targeting options for the design of antivirals. All data and models are freely available online, providing a quantitative structural atlas.


Asunto(s)
COVID-19/virología , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Sitios de Unión , COVID-19/transmisión , Simulación por Computador , Humanos , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica , Proteoma , Glicoproteína de la Espiga del Coronavirus/química
5.
bioRxiv ; 2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: covidwho-636232

RESUMEN

SARS-CoV-2 has intricate mechanisms for initiating infection, immune evasion/suppression, and replication, which depend on the structure and dynamics of its constituent proteins. Many protein structures have been solved, but far less is known about their relevant conformational changes. To address this challenge, over a million citizen scientists banded together through the Folding@home distributed computing project to create the first exascale computer and simulate an unprecedented 0.1 seconds of the viral proteome. Our simulations capture dramatic opening of the apo Spike complex, far beyond that seen experimentally, which explains and successfully predicts the existence of 'cryptic' epitopes. Different Spike homologues modulate the probabilities of open versus closed structures, balancing receptor binding and immune evasion. We also observe dramatic conformational changes across the proteome, which reveal over 50 'cryptic' pockets that expand targeting options for the design of antivirals. All data and models are freely available online, providing a quantitative structural atlas.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA